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This work introduces two material models where the non-linear behaviour of reinforced 
concrete is defined in terms of stress resultants and generalized strains. The first model utilizes a 
piece-wise linear moment-curvature curve. In the second material model contributions to the 
moments and membrane forces are found on basis of the distribution of the principal strains in a 
cross-section. Compared to analyses employing layered approaches and stress-strain 
relationships, the stress-resultant material models are superior both with respect to computer 
time and numerical stability. 
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1 INTRODUCTION 

Today, non-linear finite element analyses of reinforced concrete structures are commonly used 
to analyse local problems in a structure. Normally only a small part of the structure is part of a 
local analysis. In such an analysis the effect of redistribution of forces in the structure is 
neglected. In some types of structures, like concrete plates and shells, this effect is very 
important as neglecting it could be both unsafe and uneconomical. The effect of the 
redistribution of forces would automatically be taken into account if the global finite element 
model is employed in the non-linear analysis. There are two main reasons why this is not always 
practicable: computational time and numerical problems. Even with today's computer facilities, 
a non-linear analysis of a reinforced concrete structure is very time consuming. Normally the 
analysis is carried out using the layered formulation. Here the cross-section is divided in layers, 
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and in each layer the response is found on basis of the stress-strain relationship for concrete and 
reinforcement, see Figure I (a). An integration through the thickness is then necessary to find the 
stress-resultants. The numerical problems mainly arise because concrete behaves differently in 
tension and compression, and is often modelled by different failure criteria. The main objective 
in this work is to define the material model in terms of stress resultants and generalized strains 
[ 1]. Hence, the integration through the thickness to find the stress resultants is avoided. The 
numerical solution should also be more stable because the response is found on basis of the total 
cross-section. The stress resultants for a plate or shell are presented in Figure I (b ). The 
generalized strains are the membrane strains at the middle plane E, the transverse shear strains y 
and the curvatures x:. 
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Figure 1 - (a) Shell divided into /ayers; (b) Stress resultants acting on a plate or shell element. 

Fora general shell the stress resultants and the generalized strains are given as 

G = [Nx,Ny,NX),, Vx, Vy,Mx,My,Mxy] T 

e = [ Ex, Ey, Yxy, 'Yxz, 'Yyz, Kx, Ky, Kxy] T 

(I) 

The constitutive relationship is defined as cr = CE, where C is the material matrix which for the 
linear elastic response is given as 

0 
Cv 
0 

C=-E-[ vol 
' I -v2 

(2) 

Here h is the shell thickness, E is Y oung's modulus, v is Poisson's ratio, Getr is the effective 
sheaF modulus, li is the identity matrix. For linear elastic response there is no coupling between 
the membrane, transverse shear and bending deformations. 

This paper describes two different stress-resultant material models: (i) a stress-resultant material 
model for plates without any in-plane forces and (ii) a stress-resultant material model for general 
shells. The structures under consideration are subjected to short-term static loading. All analyses 
in this article assume a linear elastic behaviour of concrete in compression and an elastic-perfect 
plastic behaviour of the reinforcement. 
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2 STRESS-RESULTANT MATERIAL MODELS 

2.1 Resultant plate model 

Using constitutive models defined directly in terms of stress resultants is appealing to many 
engineers as they are used to thjnk I in "moments and curvatures". Figure 2(a) illustrates a 
simplified (piecewise linear) M/ /'c urve in the principal moment direction for a reinforced 
concrete plate, where the principal moments, MI and M2, and the reinforcement, Asx and Asy, do 
not have the same direction [2]. When a crack is initiated at point A, a distinct change in the 
stiffness takes place. At point B the reinforcement in one direction starts to yield. At point C the 
reinforcement in the other direction also yields. What happens beyond point C depends on the 
amount of reinforcement in the plate. There are also empirical M- re lationships, where various 
assumptions regarding flexural stiffness are employed for different material states [3,4]. It is 
important to note that when using M- curves, the concrete and the reinforcement are treated as 
one material. 
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Figure 2 - (a) Typica/ moment curvature graph; (b) Dependency of curvature in opposite 
direction. 
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The M- curve presented in Figure 2(a) is only valid for one specific direction. There is a 
significant effect of the orientation of the reinforcement with respect to the directions of the 
moments [5]. Even for an isotropic reinforced plate subjected to uniaxial moment, the flexibility 
can be increased several times as the reinforcement rotates. The M- relationship also depends 
on the strains perpendicular to the direction under consideration, see Figure 2(b ). 

The simplified piecewise linear graph in Figure 2(a) is employed as a stress-resultant material 
model in this work for plate structures without membrane forces. The breaking points on the 
graph are found by enforcing zero in-plane forces. Thus, this material model is only applicable 
to concrete plates where the in-plane forces are zero. When tinding the breaking points, the 
tensile stresses in concrete are assumed to be zero. The transverse shear deformations are 
assumed to be uncoupled from the bending deformations. The linear elastic transverse shear 
response given in Eq.(2), is assumed to be sufficient in bending dominated problems of plates. A 
secant unloading path is chosen in the M- relationship. 

In the non-linear finite element analyses, cracks are assumed to be in direction of the principal 
moments, and hence avoiding the definition of the constitutive equations for the twisting 
moment. An efficient utilization of the stress-resultant plate model requires plate finite elements 
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without in-plane translational degrees of freedom. However, an iterative procedure is then 
necessary to find the compression zone heights. The M- re l ationship depends both on the 
angle between the reinforcement and the crack, and on the ratio between the principal moments. 
Consequently, in an analysis of a two-way slab the relationship needs in general to be 
recomputed in every equilibrium iteration. 

Concrete is not a completely brittle material. Even plain concrete subjected to tensile loading 
has a post-peak descending branch in a stress deformation diagram. This effect is known as 
tension softening. In reinforced concrete the concrete block between two adjacent cracks is 
capable of resisting tensile forces induced because of the bond with the reinforcement. This 
effect is known as tension stiffening. Tension softening and tension stiffening effects are not 
directly taken into account when defining M- relationship in the stress-resultant plate model. 
However, the model does indirectly incorporate some of the effects since it employs a linear 
curve between the cracking moment and the yielding moment. 

2.2 Resultant shell model 

Because of the anisotropic nature of reinforced concrete, the principal moments and principal 
membrane forces do not necessary have the same direction. Compared to a layered model using 
stress-strain relationships this makes it more difficult to describe a material model when using 
stress resultants and generalized strains. In addition, the moments and membrane forces are 
dependent on each other. For steel structures it is possible to use plasticity theory defined in the 
stress resultant space [8,9]. However, for reinforced concrete this seems like an unattainable 
task. 

In this work a simplified approach is chosen to define the material law by stress resultants. 
Instead of computing moment-curvature and axial force - membrane strain relationships amore 
direct method is used. On basis of the strain distribution in a cross-section, compression and 
tension zones are found and added up to stress resultants. This method has similarities to 
traditional design of reinforced concrete structures. In contrast to a traditional non-linear layered 
analysis of shells, the integration through the thickness is avoided. It also avoids the problem 
having integration points with little stiffness after cracking which often results in numerical 
problems. This makes the model fast and numerically stable. The model is capable of finding the 
global response of a reinforced concrete shell structure. The non-linear phenomena of concrete 
that are taken into account are cracking and yielding of reinforcement. 

One of the important and difficult problems in a non-linear analysis of concrete is to define 
crack directions. When defining the material model in terms of stress resultants, the model has 
to describe the overall response of the cross-section. Consequently the definition of crack 
directions is not straightforward. In the finite element formulation the stresses are normally 
calculated from known strains. In light of this, it is simplest and quickest to employ a strain 
criterion for cracking. In this work cracks are always assumed to occur in the principal strain 
directions on the top and/or bottom surface. This is a rotating crack model which has the form of 
non-linear elasticity. It should be emphasized that the rotation of the crack angle is referred to 
rotating of principal strains at the faces of the shell. The foliowing assumptions are made 
regarding cracks in the numerical model: 

• Only the in-plane strains are taken into account to find the crack directions. 
• The shell is only checked for cracks at the faces. 
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• The crack direction is constant in the entire tension zone in a cross-section. 

By only taking into account in-plane strains when tinding the crack directions, only vertical 
cracks can be formed. Since crack existence is checked only on the surfaces, a maximum of four 
cracks is possible in the model. Assuming the crack direction is constant in a tension zone can 
sometimes be a gross error. Having shear membrane strains means the principal strain direction 
can differ considerably on the face and the beginning of the tension zone. Taken into 
consideration that the present model is meant to be used in global response analysis of 
reinforced concrete structures, this should still produce satisfactory results. 
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Figure 3 - Principal strain distribution in a cross-section with ane crack on the top surface. 

A general shell has a principal strain distribution over the cross-section which is not linear. 
Figure 3 presents an example of distribution of principal strains E1 and E2• The units in the cross­
section are chosen so that a curvature of one gives a membrane strain of one at the faces. It must 
also be noticed that the !argest principal strain has different direction on top and bottom faces. 
On the top face the principal direction is 5° to the Ex direction, and on bottom it is -45°. 

The main idea when tinding the stress resultants is to utilize the known principal strain 
distribution in the cross-section. The cross-section is divided in two parts (layers ), t1op and tbot in 
Figure 3. One layer belongs to the top face and the other layer belongs to the bottom face. The 
border between the two layers are normally defined to be were the !argest principal strain equals 
the concrete cracking strain Ecr, see Figure 3. lf this definition does not exist, the border level is 
defined to be were the maximum principal strain is at the minimum. After dividing the cross­
section in two layers, contributions to the sectional forces are calculated separately in each layer. 
The directions for which this is done are different in the two layers. The calculations are done in 
the maximum principal strain direction (crack direction) at the actual face. Finally, contributions 
from reinforcement and concrete are added to the sectional forces. 

Figure 4 illustrates a principal strain distribution state which introduces two cracks on the top 
surface. As seen in Figure 4 the thickness in a layer is not necessary the same in the two 
principal directions. The resultant concrete force in the lower layer belonging to the direction of 
}argest principal strain is calculated using t\01 • In direction of smallest principal strain direction, 
calculation of resultant concrete force is done with t\01• Contribution to the shear membrane 
concrete force is found by employing the smaller of the two thicknesses. 

Other possible principal strain distributions can be found in [1]. 
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Figure 4 - Principal strain distribution in a cross-section with two cracks on the top surface. 

Contributions from tension softening and tension stiffening are added directly to the sectional 
forces in the stress-resultant shell model. Figure 5 shows the applied curves. The tension 
softening effect is an isotropic property while additional stresses due to tension stiffening is 
added in direction of the reinforcement. Parameters in the curves relates to the fracture energy of 
concrete, crack spacing, tensile strength, a characteristic length to make the strain softening 
mesh independent, and angle between crack and reinforcement. Detailed description of the 
applied tension softening and tension stiffening models can be found in [1]. 

Ectu Ec 

Figure 5 - (a) Tension softening curve; (b) Tension stiffening curve. 

2.3 Single element tests 

The stress-resultant material models are implemented in the DIANA Finite Element Code [6]. 
To verify the material models comparison have been made against experimental results. 
Numerical analyses have been carried out on three slabs tested by Lenschow [5] and Cardenas 
[7]. The results are also compared to layered finite element analyses. The layered model takes 
into account the tension stiffening effect by applying a linear descending branch in the tensile 
stress-strain relationship, with a maximum tensile strain Ecru= 0.5 %0, see Figure 5(a). The slabs 
were loaded by monotonically increasing uniaxial and biaxial moments. The applied moments, 
definition of reinforcement directions and geometrical and material properties are given in 
Figure 6. 
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Thickness 
Effective height 
Concrete compressive strength 
Concrete tensile strength 
Young's modulus for concrete 
Young's modulus for steel 
Yield stress for steel 

h = 105 mm 
d = 89 mm 
fe = 35.0 N/mm2 

fe, = 3.5 N/mm2 

Ee = 27000 N/mm2 

Es = 2· 105 N/mm2 

fsy = 350 N/mm2 

Figure 6 - (a) Applied moments and reinforcement directions in slab element; (b) Geometrical 
and material properties. 

Table 1 provides geometrical data for the slab elements. 

Table 1 - Geometrical data for slab elements. 

Test 
Asx Asx 0 M2/M1 
mm2/mm mm2/mm 0 

B7 0.838 0.914 45 0 
B35 0.838 0.914 34 0.45 
B39 0.838 0.210 56 0.45 

The comparisons of the results obtained in the non-linear analysis and the experimental results 
are plotted in moment-curvature diagrams in Figure 7-Figure 9. Specimen B7 [5] is loaded with 
a uniaxial moment. The reinforcement is nearly isotropic and is placed at an angle of 45° to the 
applied moment. It is seen in Figure 7 that the experimental data obtained and the resultant 
material models are in close agreement. 
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Figure 7 - Slab B7, moment-curvature diagram. 
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The flexibility and the yielding moment are well predicted. Hence the resultant models are 
capable of describing the increased flexibility when rotating the reinforcement. Different tension 
stiffening and tension softening modelling in the material models can explain the difference in 
results after cracking. The resultant model has more of these effects incorporated. After cracking 
both the layered and the resultant shell analyses have a bump in the moment-curvature diagram 
which the experimental results do not have. This is due to the chosen linear tension softening 
curve. Just after cracking the contribution from tension softening is large. By employing a 
different curve, for example an exponential curve, the bump effect can be smoothed out. The 
resultant plate model does not include directly any tension softening and tension stiffening 
effects. Thus this analysis shows the softest response. 

Specimen B35 [7] is loaded with a biaxial moment. The biaxial moment is a combination of a 
bending and a torsional moment. The reinforcement is still nearly isotropic but is placed at an 
angle of 34° to the }argest applied moment. Figure 8 depicts that the yielding moment obtained 
experimentally and from the resultant model is nearly equivalent. The yielding curvature is 30% 
higher for the resultant model than for the experiment. Due to the reinforcement direction of 
34°, the cracks rotated up to 5° in the experiment after they were initiated in the applied moment 
direction. The resultant plate and the layered model were not capable of describing this crack 
rotation. 
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Figure 8 - S/ab B35, moment-curvature diagram in the /argest moment direction. 

The resultant plate model constrains the crack direction to the applied principal moment 
directions. The layered model utilizes a multiple fixed crack model. The first crack is formed in 
the applied moment directions. New cracks can form in a multiple fixed crack model if the 
principal stress exceeds the tensile strength in a direction which is larger than a predefined 
angle. In these layered analyses this threshold angle is set to 30°. Thus only one crack is formed 
at each face in this slab. In the analysis employing the resultant shell model the crack initiated 
by the largest moment rotated 4 ° before yielding of reinforcement and then rotated back to 0° 
after yielding. All analyses reached yielding of reinforcement in one direction at a moment level 
of -22 kNm/m and produced a clear break in the diagram. However, the experiment did not 
show any significant change in stiffness at this load level. 
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Specimen B39 [7] is subjected to a combination of bending and torsional moment. The 
reinforcement is highly anisotropic and is placed with the strongest reinforcement direction 
having an angle of 56° to the largest applied moment. As seen in Figure 9 the experiment 
provides a more flexible response before reaching the yielding moment as compared to the 
numerical analyses. Due to the anisotropic and skew reinforcement, a large crack rotation takes 
place in the experiment. The resultant plate and layered model cannot describe this effect 
because of the constraining of the crack direction. The experimental curve is as expected very 
difficult to follow between the cracking moment and the yielding moment. With a reinforcement 
ratio of only 0.2% in one direction, the yielding moment is only 60% higher than the cracking 
moment. Accurate modeiling of tension stiffening and tension softening are henceforth 
necessary in order to get correlation with the experimental. The yielding moment is well 
predicted with the resultant models since it is less sensitive to reinforcement orientation and 
anisotropic reinforcement. Hence the load capacity can still be found in structures with low 
reinforcement ratios when the failure mode is govemed by yielding of reinforcement. 
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Figure 9 - Slab B39, moment-curvature diagram in the /argest moment direction. 

The single elements in this section are subjected to pure bending. Analyses with the stress­
resultant shell model of elements subjected to both moments and membrane forces have been 
performed in [1]. The resultant shell model was able to produce results which were in agreement 
with experiments and analyses using a layered approach. 

2.4 Uniformly loaded square f,xed plate 

This example presents an analysis using the stress-resultant material model on a uniformly 
loaded square fixed reinforced concrete plate. The plate is 10000 mm long and has isotropic 
reinforcement. A square fixed plate covers most of the non-linearities, which must be 
considered in a non-linear analysis. Besides the cracking and yielding of the plate also includes 
cracks inclined to the reinforcement directions. Due to the fixed edge, a redistribution of 
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moments from the edge to the inner of the plate will take place after the initiation of cracks 
along the edges. The geometrical and material properties for the plate are 

Thickness 
Effective height 
Concrete compressive strength 
Concrete tensile strength 
Young's modulus for concrete 
Young's modulus for steel 
Yield stress for steel 

h =300 
d = 280 
fe = 36.0 
fct = 3.0 
Ec = 27000 
Es= 210000 
fsy = 500 

mm 
mm 
N/mm2 

N/mm2 

N/mm2 

N/mm2 

N/mm2 

The reinforcement amounts are constant in the plate and are at both faces and directions 
1.0 mm2/mm. With these low reinforcement ratios the ultimate failure of the plate will be 
governed by yielding of reinforcement. Geometrical non-linearities are not considered in this 
work. Therefore it is not possible to describe any increased capacity due to membrane stiffening 
effects. 

The stress-resultant plate model and yield line theory are founded on some of the same 
assumptions. Hence, a verification of the resultant model is a means of comparing the result to a 
yield line solution. When having a plate with constant reinforcement ratios, a traditional limit 
load analysis of a square fixed plate gives a yield load of 

(3) 

where My is the positive yield moment, My' is the negative yield moment, and b is the 
dimension of the plate. With the reinforcement ratios in this example, the yield moments 
become 130.2 kNm/m. This produces a yielding load of 62.5 kN/m2

• 

To be able to make a direct comparison between the resultant shell model and the layered 
model, the same tension stiffening model has been applied in these two analyses. 

The hest way to validate the global response of a structure is to examine the deflections. Figure 
10 depicts the deflection at the centrepoint of the plate. As seen, the agreement between the 
resultant shell and layered models is very good. 

The resultant plate model is in good resemblance with the other analyses up to a load level of 
40 kN/m2

• After this load level the resultant model reaches its ultimate capacity while in the 
layered analysis it continues to increase. The difference in capacities can be explained by the 
enforcing of zero membrane forces in the resultant plate model. After cracking in reinforced 
concrete the neutral axis will move from the middle plane and introduce horizontal 
displacements. Due to the different cracking pattern in the middle of the plate and along the 
edges, the response is a non-uniform in-plane displacement pattern. Even if the plate does not 
have any horizontal constraints, this introduces membrane forces in the plate. Globally these 
membrane forces are in equilibrium. The resultant plate model is not capable of describing this 
because of the absence of in-plane translational degrees of freedom and the assumption of zero 
in-plane forces. The resultant shell and layered analysis utilizes a general shell element and can 
therefore describe the non-uniform in-plane displacement pattern. The limit load is also 
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indicated in Figure 10. Compared to the limit load, the resultant plate analysis predicts the 
ultimate load carrying capacity with satisfactory accuracy. 
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Figure 10 - Load-deflection curve at centre point. 

A local validation of the resultant model is to examine the increase in sectional forces. The 
increase of the maximal moment along the fixed edge, is presented in Figure 11. After cracking, 
the increase of the moments along the edge starts to decrease. This is due to the redistribution of 
moments in the plate. A plate with no redistribution (linear elastic analysis) is indicated in the 
figures. It is seen in Figure 11 that the accordance between the resultant shell and layered 
analyses is very good. At a load of 20 kN/m2 the moment at the centrepoint of the fixed edge 
starts to decrease. An elastic unloading which is assumed in the resultant shell model, is capable 
of describing this with satisfactory accuracy. At a load of 32 kN/m2 a global unloading takes 
place in the plate. This can be seen in both Figure 10 and Figure 11. 
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Figure 11 - Moment-load curve at centre point offixed edge. 
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Compared to the other analyses the resultant plate model yields too little redistribution. The 
resultant plate model is also incapable of describing the local unloading which starts at a load of 
20 kN/m2 in the layered and the resultant shell analysis. The yield moment at load level 
36 kN/m2 is well predicted in the resultant model. 

3 COMPUTER TIME AND CONVERGENCE 

The two main reasons for using a stress-resultant material model are the efficiency and the 
numerical stability of such a model. Compared to a model using a layered formulation, 
integration through the thickness is avoided. When looking at the differences in computer time 
and convergence between the resultant and layered models, the rectangular plate in Section 2.4 
was chosen as an example. The layered model had seven integration points through the 
thickness. 

Table 2 presents the CPU-time for one iteration in the plate. These values must not be seen as 
the absolute differences between the models. The computer time for the layered model varies 
with the degree of non-linearity such as number of integration points cracked and the chosen 
number of integration points through the thickness. The computer time for the resultant model is 
more independent of the degree of non-linearity. 

Table 2 - CPU-time for one iteration. 
CPU-time Resultant Resultant 
[ seconds] plate model shell model 
Total 1.8 2.6 
Intemal 
force vector 

0.7 1.3 

Layered 
model 
13.3 

10.7 

In order to look at the stability of the numerical solution, the number of iterations needed to 
satisfy equilibrium was counted. In the equilibrium process a regular Newton-Raphson iteration 
method was used together with an updated normal plane arc-length method. Asa convergence 
criteria a force norm was chosen. Two different tolerances for convergence were tried, 10-2 and 
10·3• Table 3 specifies the total number of iterations for all load increments needed to satisfy the 
tolerance for convergence. The analyses were stoppedata load level of 50 kN/m2

• As seen in 
the table, the resultant based material models need fewer numbers of iterations than the layered 
model. 

Tabte 3 - Number of iterations up to load level 50 kN/m2
. 

Model 

Layered model 
Resultant plate 
model 
Resultant shell 
model 

Total number of iterations 
Norm 10·2 Norm 10-3 

214 579 

21 53 

89 188 
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The total CPU-time and 1/0-time up to a specific load level is presented in Table 4. The I/O­
time is mainly the time the computer program needs to write and get information from a 
database. Both resultant models are superior to the layered model. 

Table 4 - Total CPU-time up to load level 50 kN/m2
. 

Model 
CPU-time [seconds] 1/0-time [ seconds] 
Norm 10·2 Norm 10-3 Norm 10·2 Norm 10·3 

Layered model 4019 10517 1528 3721 
Resultant plate 38 94 4 7 
model 
Resultant shell 402 784 67 128 
model 

The results presented in this section regarding computer time and convergence must not be 
taken as the absolute differences between stress-resultant material models and analyses 
employing a layered approach. However, the results do indicate that the resultant material 
models are computational efficient and numerical stable. Especially the resultant plate model is 
fast and stable. This can partly be explained by the enforcing of zero in-plane forces when 
tinding the moment- curvature relationship. Hence, unbalanced in-plane forces are not carried 
over to the global iterative procedure. 

4 APPLICATION TO PLATE BRIDGE 

4.1 Introduction 

The new main airport for Norway opened at Gardermoen outside Oslo in October 1998. In 
connection with this the motorway out of Oslo has been extended from two to four Ianes. New 
bridges were also built and two bridges had to be removed in connection with this extension. 
One of the bridges for destruction was Smedstua bridge at Hovinmoen close to Gardermoen. 
Instead of a regular destruction of the bridge, the Norwegian Roads Administration and the 
Department of Structural Engineering at the Norwegian University of Science and Technology 
decided to carry out a full-scale experiment on the bridge. The main idea was to gain more 
insight and knowledge in the response of large reinforced concrete structures in terms of 
serviceability and ultimate limit state. Smedstua bridge, which was build in 1989, is a plate 
bridge with three spans and is symmetrical in a longitudinal direction with respect to the middle 
of the bridge. It has two driving Ianes and one pedestrian Iane. The bridge is simply supported 
at the abutments and has sleeve bearings at the columns and at one of the abutments. 

The experimental work was divided in two parts. In serviceability limit state, the bridge was 
loaded with motor trucks filled with sand. Each truck had a weight of 42.5 tonnes. However, the 
bridge was heavily reinforced and showed little cracking and small strains when loaded with the 
trucks. Therefore, this load case will not be further investigated here. In ultimate limit state, a 
container was built in the middle of the bridge and loaded with sand and gravet. The container 
was continuously filled with sand and grave! by means of a conveyor belt. To try to achieve an 
even distribution of the load inside the container a dipping shovel was used. During the loading 
of sand the deflections and strains in the reinforcement and concrete was measured in the middle 
and above the columns of the bridge. Both strains in longitudinal and transversal directions were 
of interest. Figure 12 show shows a picture of Smedstua bridge during the continuously loading 
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of sand into the container. Detail descriptions of the experimental work and calculations can be 
found in [l O] and [11 ]. 

Figure 12 - Smedstua bridge during loading. 

4.2 Geometry and material properties 

The material characteristics of concrete were found experimentally and are provided in Table 5. 
After finishing the loading of the bridge examples of the reinforcement were taken to find the 
average yielding stress. 

Table 5 - Experimental found material data 

t ~ & ~ ~ 
N/mm2 N/mm2 N/mm2 N/mm2 N/mm2 

48.6 3.8 31100 535 200000 

The statical model in longitudinal direction employed in the analyses is illustrated in Figure 13. 
In transversal direction the bridge is supported in single points at the columns and the abutment. 
Due to symmetry only half of the bridge is modelled. The middle span is 16.3 m long and the 
side spans are 11 m long. The non-symmetrical cross-section of the bridge is shown in Figure 
14. The thickness of the flanges in the cross-section varies from 200 mm at the outside to 
280 mm close to the web. The web of the cross-section has a thickness of 650 mm at the outer 
and 700 mm at the centre line of the driving Ianes. In addition there is a 30 mm concrete 
wearing surface at the driving Ianes. The cross-section is constant in the longitudinal direction of 
the bridge. 

I· 6250 " 1 
+!"'"; _+_+_+ __ +_..,sl!"'a_n_d_an_d_g_ra_v_e_l l_o_ad--.;i, G 

Symmetry line i Å /\ 
~; D ~ 

8150 11000 .. , 

Figure 13 - Statical system with sand and grave/ load in middle span. 
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Figure 14 - Cross-section with sand and grave! load in the driving Ianes. 

Table 6 presents the main reinforcement amounts. In the table, Asx is the reinforcement in 
longitudinal direction of the bridge. More detailed information about the gradation of 
reinforcement can be found in [11]. The concrete cover is 45 mm. In addition comes the 30 mm 
concrete wearing surface. The reinforcement diameter was 25 mm in longitudinal direction and 
20 mm in transversal direction of the bridge. Around the columns there is also shear 
reinforcement. However, shear reinforcement is not part of the stress-resultant material models. 

Table 6 - Reinforcement amounts. 
Columns Middle span Side Span 

Reinforcement 
Flange Web Flange Web Flange Web 

Asxtop [mm2/mm] 1.0 12.7 1.0 2.1 1.0 2.1 
Asy op [mm /mm] 1.3 4.6 1.3 1.3 1.3 1.3 
Asx001 [mm2/mm] 1.0 2.1 1.0 6.6 1.0 2.1 
Asy [mm /mm] 1.3 1.3 1.3 1.3 1.3 1.3 

4.3 Finite element model 

The element mesh employed in the analyses is shown in Figure 15. The figure also gives the 
load area and the points simulating the support at the columns and the abutment. In the analyses 
four-node quadrilateral plate and shell elements were used in the stress-resultant plate and shell 
model respectively. The element model consists of 480 elements and 525 nodes. 
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Figure 15 - Element mesh with supports and load area. 

4.4 Results 

This section presents the result from non-linear analyses carried out on the Smedstua bridge 
loaded with the container of sand. Both stress-resultant material models presented in this article 
are employed. The bridge does not have any external membrane forces and the internal 
membrane forces are small. Hence, the stress-resultant plate model is applicable. The bridge is 
old which makes it impossible to find the response in the bridge before starting to load the sand 
and gravel. Thus, when making a comparison of displacements and strains between the 
experiment and analyses, only the response due to the sand load is considered. The non-linear 
analyses are divided in two load steps. The first load step is the weight of the bridge itself and 
the second is the sand and gravel load. No effect of creep and shrinkage of concrete is taken into 
account. 

The container in the middle of the bridge had an area of 6.9 x 12.5 m. The height of the 
container was 4.5 m. Completely filled with sand and gravel this corresponded to a weight of 
830 tonnes. In the transversal direction, the load was placed on the two driving Ianes as 
illustrated in Figure 14. To avoid the bridge rising at the abutments, motor trucks loaded with 
sand were placed above the supports. Unfortunately, the bridge did not break down with the 
maximum sand and gravel load of 830 tonnes. According to the Norwegian design code for 
concrete structures [12] the bridge had a shear capacity around the columns corresponding to a 
load of 360 tonnes. To initiate a failure mechanism the statical system ofthe bridge was changed 
in two steps. First one of the motor trucks placed above the abutments was taken away. The 
bridge responded with an upward deflection at this abutment of 5-10 cm. Second, the other 
motor truck was also removed. After a few seconds the bridge collapsed in the middle span. The 
failure section was in the quarter point of the middle span due to the gradation of the 
reinforcement. Figure 16 shows a picture of Smedstua bridge after failure load. A simulation of 
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the change in statical system so as to find the failure load is not performed in these non-linear 
analyses. 

Figure 16 - Smedstua bridge after failure. 

In the graphs presenting results from the analyses, only the response due to the sand and gravel 
load is considered. Figure 17 and Figure 18 depict the load-deflection curves obtained from the 
experiment and the non-linear analyses. The first graph shows the results in the middle of the 
bridge at the pavement side, point A in Figure 15. The second graph shows the results in at the 
quarter point of the middle span at the load side of the bridge, point B in Figure 15. The 
agreement between the stress-resultant shell model and the layered model, as observed in the 
figures, is very good. Hence, the different tension stiffening formulations in the two models do 
not influence the results. In the quarter point of the middle span, point B, the analyses predict 
the response with satisfactory accuracy compared to the experiment. However, in the middle of 
the bridge, point A, there is a deviation between the analyses and the experiment. The difference 
can be explained by two factors: 

• Non-uniform distribution ofthe load. 
• Contributions from sand and gravel to the compression zone in the cross-section. 
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Figure 17 - Load-dejl.ection curve in the middle of the bridge, point A. 
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Figure 18 - Load-deflection curve in quarter point of middle span, point B. 

The loading container was made by concrete form elements. It was stiffened by placing 
reinforcement bars in the longitudinal and transversal directions in the entire height. Together 
with the stiff container the deflection of the bridge introduces an arch effect in the sand and 
gravel. Consequently, the load is not uniformly distributed as assumed in the analyses. The arch 
effect also implies contributions from sand and gravel to the effective cross-section. This effect 
is more pronounced when having the load inside a stiff container. Quantifying these two factors 
is difficult and is not done here. The factors influence the results more in the middle of the 
bridge than in areas closer to the columns. The stress-resultant plate model shows a too soft 
response and too low capacity in Figure 17 and Figure 18. Some membrane forces are introduced 
in the plate due to the non-symmetrical cross-section and loading area. As for the uniformly 
loaded square plate in Section 2.4, this can increase the capacity of the structure. The resultant 
plate model assumes zero in-plane forces and therefore cannot describe this effect. In the plate 
model the tension stiffening effect is tak.en into account indirectly and the effect is difficult to 
quantify. Thus, some of the deviation between the analysis using the plate model and the other 
two analyses can be explained by the different formulation of the tension stiffening effect. 

Figure 19 and Figure 20 depict the strain in the longitudinal reinforcement at the middle and 
close to the columns of the bridge, points C and Din Figure 14 and Figure 15 respectively. The 
strains from the resultant and the layered analyses are in close agreement. Experimentally the 
strains were measured by using strain gauges at the reinforcement bars. As for the load­
deflection curves the strains from the analyses produce large deviations compared to the 
experiment in the middle of the bridge. Some of the deviation can be explained by the arch 
effect in the sand and gravel. As seen in Figure 17, the deviation starts at a load level of 
approximately 3500 kN which corresponds to a sand height of 2 m. This is reasonable since a 
certain height of the sand and deflection of the bridge is needed to build up the arch effect. Cl ose 
to the columns, the analyses and experiment are in good agreement. The strains in the 
reinforcement due to weight of the bridge itself are of magnitude 0.1 %0 in the analyses. 
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Figure 19 - Strain in reinforcement in the middle of the bridge, point A. 
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Figure 20 - Strain in reinforcement close to the column, point B. 

5 CONCLUSIONS 

This work has focused on simplified numerical models for reinforced concrete plates and shells. 
The constitutive models are defined in terms of stress resultants and generalized strains. This 
results in computer-efficient models that are capable of describing global non-linear effects such 
as redistribution of forces in a structure. The }imitation of the models is related to problems 
involving localization, like shear failures, that cannot be properly modelled. The reasons for 
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employing material models defined with generalized strains and stresses are to save computer 
time and the numerical stability of such models. Thus, the models are applicable to non-linear 
analyses of large reinforced concrete structures where these two factors are often critical. In 
order to verify the stress-resultant material models, comparisons have been made to 
experimental results and non-linear analyses using a layered approach. The analyses were 
carried out on both single elements and on larger structures. The resultant material models were 
capable of simulating the response with satisfactory accuracy. The models were also superior 
compared to analyses performed using a layered approach as the computer time requirements 
were greatly reduced. 
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